32 research outputs found

    Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos.

    Full text link
    Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development

    The Virtual Insect Brain protocol: creating and comparing standardized neuroanatomy

    Get PDF
    BACKGROUND: In the fly Drosophila melanogaster, new genetic, physiological, molecular and behavioral techniques for the functional analysis of the brain are rapidly accumulating. These diverse investigations on the function of the insect brain use gene expression patterns that can be visualized and provide the means for manipulating groups of neurons as a common ground. To take advantage of these patterns one needs to know their typical anatomy. RESULTS: This paper describes the Virtual Insect Brain (VIB) protocol, a script suite for the quantitative assessment, comparison, and presentation of neuroanatomical data. It is based on the 3D-reconstruction and visualization software Amira, version 3.x (Mercury Inc.) [1]. Besides its backbone, a standardization procedure which aligns individual 3D images (series of virtual sections obtained by confocal microscopy) to a common coordinate system and computes average intensities for each voxel (volume pixel) the VIB protocol provides an elaborate data management system for data administration. The VIB protocol facilitates direct comparison of gene expression patterns and describes their interindividual variability. It provides volumetry of brain regions and helps to characterize the phenotypes of brain structure mutants. Using the VIB protocol does not require any programming skills since all operations are carried out at an intuitively usable graphical user interface. Although the VIB protocol has been developed for the standardization of Drosophila neuroanatomy, the program structure can be used for the standardization of other 3D structures as well. CONCLUSION: Standardizing brains and gene expression patterns is a new approach to biological shape and its variability. The VIB protocol provides a first set of tools supporting this endeavor in Drosophila. The script suite is freely available at [2

    A Statistically Representative Atlas for Mapping Neuronal Circuits in the Drosophila Adult Brain

    Get PDF
    Published: 23 March 2018The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fninf.2018.00013/full#supplementary-material Supplementary Figure 1. 3D renderings of the 14 regions used for quantitative evaluation of atlas performances in segmentation and registration tasks. The 14 regions shown here were extracted from the atlas of Ito et al. (2014) that has been registered onto the group-wise inter-sex atlas (available from http://fruitfly.tefor.net). Supplementary Figure 2. Selected lines from the Janelia Farm collection showing an overlap value with the search pattern ranking among the first 50 for at least three of the five PDF profiles. (Left) GAL4-driven GFP profile registered on the standard brain. (Right) overlap between the first PDF profile and the GAL4-driven GFP profile. Numbers refer to Janelia Farm lines with associated gene names. Scale bar: 20 μm. Supplementary Table 1. Results of the 3D space query for each of the five PDF profiles. Overlap values are indicated for each Janelia Farm line and the corresponding gene name (FlyBase nomenclature) is indicated for the overlap values ranking among the first 50 for at least three of the five PDF profiles (blue). Bold names correspond to the three lines shown in Figure 10. Supplementary Movie 1. Animated rendering of the group-wise inter-sex atlas. Successively: nc82 template image (2D sections then 3D volume rendering, opaque then transparent); label image (3D surface rendering of anatomical regions, defined following Ito et al. 2014); six registered patterns of GAL4-GFP expression (3D surface rendering of intensity-thresholded pattern images); same patterns (left half of the brain) with the anatomical regions (right half of the brain).Imaging the expression patterns of reporter constructs is a powerful tool to dissect the neuronal circuits of perception and behavior in the adult brain of Drosophila, one of the major models for studying brain functions. To date, several Drosophila brain templates and digital atlases have been built to automatically analyze and compare collections of expression pattern images. However, there has been no systematic comparison of performances between alternative atlasing strategies and registration algorithms. Here, we objectively evaluated the performance of different strategies for building adult Drosophila brain templates and atlases. In addition, we used state-of-the-art registration algorithms to generate a new group-wise inter-sex atlas. Our results highlight the benefit of statistical atlases over individual ones and show that the newly proposed inter-sex atlas outperformed existing solutions for automated registration and annotation of expression patterns. Over 3,000 images from the Janelia Farm FlyLight collection were registered using the proposed strategy. These registered expression patterns can be searched and compared with a new version of the BrainBaseWeb system and BrainGazer software. We illustrate the validity of our methodology and brain atlas with registration-based predictions of expression patterns in a subset of clock neurons. The described registration framework should benefit to brain studies in Drosophila and other insect species.IA-C, TM, NM, FS, and AJ were funded by the Tefor Infrastructure under the Investments for the Future program of the French National Research Agency (Grant #ANR-11-INBS-0014). FR was supported by INSERM. Work at Institut des Neurosciences Paris-Saclay was supported by ANR Infrastructure Tefor and by ANR ClockEye(#ANR-14-CE13-0034-01). JI was supported by the Spanish Ministry of Economy and Competitiveness (TEC2014-51882-P), the European Union's Horizon 2020 research and innovation programme (Marie Sklodowska-Curie grant 654911, project THALAMODEL), and the European Research Council (ERC Starting Grant no. 677697 BUNGEE-TOOLS). VRVis (KB, FS) is funded by BMVIT, BMWFW, Styria, SFG and Vienna Business Agency in the scope of COMET - Competence Centers for Excellent Technologies (854174) which is managed by FFG. The Institut Jean-Pierre Bourgin benefits from the support of the LabEx Saclay Plant Sciences-SPS (#ANR-10-LABX-0040-SPS)

    A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK/PI3K induced malignant growth

    Get PDF
    Somatic mutations activating MAPK/PI3K signalling play a pivotal role in both tumours and brain developmental disorders. We developed a zebrafish model of brain tumour based on somatic expression of oncogenes that activate MAPK/PI3K signalling in neural progenitor cells. HRASV12 was the most effective in inducing both heterotopia and invasive tumours. Tumours, but not heterotopias, require persistent activation of phospho‑(p)ERK and express a gene signature similar to the mesenchymal glioblastoma subtype, with a strong YAP component. Application of a 8-gene signature to human brain tumours establishes that YAP activation distinguishes between mesenchymal glioblastoma and low grade glioma in a wide TCGA sample set including gliomas and glioblastomas (GBMs). This suggests that the activation of YAP may be an important event in brain tumour development, promoting malignant versus benign brain lesions. Indeed, co-expression of dominant active YAP (YAPS5A) and HRASV12 abolishes the development of heterotopias and leads to the sole development of aggressive tumours. Thus, we have developed a model proving that neurodevelopmental disorders and brain tumours may originate from the same somatic mutations activating oncogenes and established that YAP activation is a hallmark of malignant brain tumours

    Das Virtual Insect Brain Protocol

    No full text
    Since the fruit fly Drosophila melanogaster entered the laboratories as a model organism, new genetic, physiological, molecular and behavioral techniques for the functional analysis of the brain rapidly accumulated. Nowadays this concerted assault obtains its main thrust form Gal4 expression patterns that can be visualized and provide the means for manipulating -in unrestrained animals- groups of neurons of the brain. To take advantage of these patterns one needs to know their anatomy. This thesis describes the Virtual Insect Brain (VIB) protocol, a software package for the quantitative assessment, comparison, and presentation of neuroanatomical data. It is based on the 3D-reconstruction and visualization software Amira (Mercury Inc.). Its main part is a standardization procedure which aligns individual 3D images (series of virtual sections obtained by confocal microscopy) to a common coordinate system and computes average intensities for each voxel (volume pixel). The VIB protocol facilitates direct comparison of gene expression patterns and describes their interindividual variability. It provides volumetry of brain regions and helps to characterize the phenotypes of brain structure mutants. Using the VIB protocol does not require any programming skills since all operations are carried out at a (near to) self-explanatory graphical user interface. Although the VIB protocol has been developed for the standardization of Drosophila neuroanatomy, the program structure can be used for the standardization of other 3D structures as well. Standardizing brains and gene expression patterns is a new approach to biological shape and its variability. Using the VIB protocol consequently may help to integrate knowledge on the correlation of form and function of the insect brain. The VIB protocol provides a first set of tools supporting this endeavor in Drosophila. The software is freely available at http://www.neurofly.de.Seitdem die Taufliege Drosophila melanogaster als Modellorganismus Einzug in die Forschung erhalten hat, sammeln sich mehr und mehr genetische, physiologische und molekulare Techniken für die Funktionsanalyse des Gehirns an. Diese beruhen heutzutage meist auf Gal4 Expressionsmustern, die sichtbar gemacht werden können und eine gezielte Manipulierung von definierten Zellgruppen ermöglichen. Um Ergebnisse verschiedener Untersuchungen miteinander in Beziehung setzen zu können, muss man jedoch die typische Anatomie der zugrunde liegenden Expressionsmuster kennen. Diese Arbeit beschreibt das Virtual Insect Brain (VIB) Protokoll, eine Software für die Darstellung, die quantitative Einschätzung und den Vergleich von neuroanatomischen Daten, sowie einige exemplarische Anwendungen des VIB Protokolls. Die Software basiert auf der 3D-Rekonstruktions- und der Visualisierungs-Software Amira (Mercury Inc.). Sein Hauptbestandteil ist ein Normierungverfahren, das 3D-Bild-Stapel (Folgen virtueller Schnittbilder, erhalten durch konfokale Mikroskopie) auf ein gemeinsames Koordinatensystem abbildet und für jedes Voxel (dreidimensionaler Bildpunkt) die durchschnittliche Intensität berechnet. Das VIB Protokoll erleichtert dadurch den direkten Vergleich von Expressionsmustern und beschreibt ihre interindividuelle Variabilität. Es liefert volumetrische Messungen zu definierten Gehirnregionen und hilft, die durch Mutation entstehenden Veränderungen der Gehirnstruktur zu erkennen. Das Verwenden des VIB Protokolls erfordert keinerlei Programmierkenntnisse, da alle Vorgänge auf einer selbsterklärenden graphischen Benutzeroberfläche ausgeführt werden können. Obgleich das VIB Protokoll für die Normierung der Neuroanatomy von Taufliegen entwickelt worden ist, kann die Programmstruktur auch für die Normierung anderer 3D-Strukturen benutzt werden. Gehirne und Expressionsmuster zu standardisieren ist ein neuer Ansatz die Variabilität der Neuroanatomie zu hinterfragen. Bei konsequenter Verwendung kann das VIB Protokoll helfen Wissen über Form und Funktion des Insektengehirns zu miteinander zu vernetzen. Das VIB Protokoll liefert einen ersten Satz Werkzeuge, die diese Bemühung in der Taufliege ermöglichen. Die Software kann kostenfrei von http://www.neurofly.de herunter geladen werden

    A GAL4-Driver Line Resource for Drosophila Neurobiology

    No full text

    Multiple memory traces for olfactory reward learning in drosophila

    No full text
    Physical traces underlying simple memories can be confined to a single group of cells in the brain. In the fly Drosophila melanogaster, the Kenyon cells of the mushroom bodies house traces for both appetitive and aversive odor memories. The adenylate cyclase protein, Rutabaga, has been shown to mediate both traces. Here, we show that, for appetitive learning, another group of cells can additionally accommodate a Rutabaga-dependent memory trace. Localized expression of rutabaga in either projection neurons, the first-order olfactory interneurons, or in Kenyon cells, the second-order interneurons, is sufficient for rescuing the mutant defect in appetitive short-term memory. Thus, appetitive learning may induce multiple memory traces in the first- and second-order olfactory interneurons using the same plasticity mechanism. In contrast, aversive odor memory of rutabaga is rescued selectively in the Kenyon cells, but not in the projection neurons. This difference in the organization of memory traces is consistent with the internal representation of reward and punishment
    corecore